Super-BABAR Physics

Zoltan Ligeti

Crucial contributions from Helen Quinn

- Introduction
 - ... Questions / Scenarios
 - ... Comparisons with LHCB / BTeV
- Survey of some interesting modes
 - ... Consider only with \lesssim few % theory uncertainty
 - ... Any "killer application"?
- Summary

Introduction

- Want to make many redundant measurements of observables which in the SM determine CKM elements, but sensitive to different short distance phys.
- Only very few observables are theoretically clean at the few % level (even in principle):

 $B o \psi K_S$, $B o \pi\pi$ w/ isospin analysis (maybe $\rho\pi$) $B_s o D_s K$, B o D K, $K_L o \pi^0 \nu \bar{\nu}$, ... and some observables which vanish in the SM

Except for $\sin 2\beta$, all are extremely hard to measure

- If this physics is still interesting at high precision, after LHC turns on, then we only need to consider:
 - SM processes whose theory error is not more than a few percent
 - Measurements sensitive to different short distance phys., as limited by hadronic uncertainties (e.g., $B \to \psi K_s$ vs. ϕK_s ; $b \to s/d \, \ell \ell$ vs. $s/d \, \nu \bar{\nu}$)

Assumptions

- Before sBaBar might become reality,
 - $\alpha(B \to \rho \pi)$ known at $\sim 10\%$ (BaBar/Belle)
 - $\gamma(B_s \to D_s K)$ known at $\sim 10\%$ (LHCb/BTeV)
 - $\beta(B \to \psi K_S)$ known at few (1?) % level (all...)
 - Magnitudes of $|V_{ub}/V_{cb}|$ and $|V_{td}/V_{ts}|$ known at $\lesssim 10\,\%$ (maybe $5\,\%$)
 - Some rare decays (e.g., $b \to s \gamma, \ b \to s \ell \ell$, inclusive / exclusive) known at $\sim\!10\,\%$

Won't consider here tau, charm physics, direct CPV
 which are all interesting...

Questions

"Machine":

Symmetric or asymmetric?

Is time dependence crucial for the interesting phys.? (Probably not for $\pi^0\pi^0$ rate and rare decays)

Is there a case for 5S?

Any B_s physics that can't be done at LHCb / BTeV?

"Physics":

Precise SM measurements: what observables can match the accuracy and cleanness of $\sin 2\beta$?

CKM tests are limited not by THE most precise measurement, but the 2nd, 3rd, etc., best ones!

Searching for new physics: what are the most interesting processes that can distinguish between various NP scenarios?

Similar processes involving different generations ($B_{d,s}$ mixing; CPV; $b \rightarrow d, s$ rare decays)

Scenarios (1)

- A: New physics found (LHC / B factories) that affects flavor physics sufficiently to learn about some of the new couplings
 - \Rightarrow B physics may be important for mapping out new mixing matrices (recall: V_{ts} and V_{td} will be measured in B not in top decay)

We'll want to measure many rare decays and CPV

- B: New physics found at LHC, but no implications for flavor physics
 - $\Rightarrow B$ physics will become less interesting
- X: Neither A, nor B
 - \Rightarrow B physics remains interesting as precision SM tests but we all get depressed...

Scenarios (2)

- A: Lattice delivers unquenched form factors at the promised few % level within next few years
 - \Rightarrow Can get $|V_{ub}|$ and $|V_{cb}|$ at this level large impact (probably cleaner at e^+e^- than at hadron machines). Also good news for many exclusive rare decays, $B \to K^{(*)}\ell\ell$, etc.; and $|V_{td}/V_{ts}|$ from mixing
- B: Lattice errors decrease slower than promised
 - \Rightarrow Inclusive measurements become essential e^+e^- may have an advantage over hadronic B factories for inclusive decays
- X: Skeptical view want many cross-checks
 - ⇒ Inclusive measurements important, both in their own right and to cross-check exclusive

LHCb highlights

From: T. Nakada, BCP4

http://www.hepl.phys.nagoya-u.ac.jp/public/bcp4/program.html

LHC contributions to CP violation

Improvement in statistics

useful B sample @ LHC in one year >

Σ all previous B experiments by then

```
\begin{split} B_d &\to J/\psi \ K_S \ (ATLAS, CMS, LHCb) & \sigma(sin2\beta) < 0.01 \\ B_d &\to K^* \, \mu^+ \mu^- \ (ATLAS, CMS, LHCb) & 45k \ events/year \ LHCb \\ B_d &\to \pi^+ \pi^- \ (LHCb, ATLAS???) & \sim 5k \ flavour \ tagged/year \\ B_d &\to \rho \pi \ (LHCb) & 100 \ flavour \ tagged \ \rho^0 \pi^0/year \ (\textit{Br} = 10^{-6}) \\ B_d &\to D^* \pi \ (LHCb) & 340k \ flavour \ tagged \ D^* \pi/year \\ B_d &\to K^\pm \pi^\mp \ (LHCb) \\ B_d &\to \phi \ K_S \ (LHCb) \end{split}
```

Up to one π^0 in the final state.

(It seems to me [see: B decays at the LHC, hep-ph/0003238, p.90] that # events for $B_d \to K^* \mu^+ \mu^-$ should read 4.5k/year)

BTeV highlights

From: BTeV Proposal, Executive Summary, p.13

http://www-btev.fnal.gov/public_documents/btev_proposal/

Table 3: Summary of physics reach in 10^7 s. Pairs of reactions between two lines are used together.

Process	# of Events	S/B	Parameter	Error or (Value)
$B^o \to \pi^+\pi^-$	24,000	3	Asym.	0.024
$B_s o D_s^\pm K^\mp$	13,100	7	γ	7°
$B^o o J/\psi K_S$	80,500	10	$\sin(2\beta)$	0.025
$B_s \to D_s^+ \pi^-$	103,000	3	x_s	(75)
$B^- \to \overline{D}^0(K^+\pi^-)K^-$	300	1	γ	10°
$B^- \to D^0 (K^+ K^-) K^-$	1,800	>10	γ	10°
$B^- \to K_S \pi^-$	8,000	1	γ	< 5°
$B^o o K^+\pi^-$	108,000	20	γ	$<5^{\circ}$
$B^o \to \rho^{\pm} \pi^{\mp}$	9,400	4.1	α	$\sim 10^{\circ}$
$B^o ightarrow ho^o \pi^o$	$1,\!350$	0.3	α	$\sim 10^{\circ}$
$B_s \to J/\psi \eta$	1,920	15	$\sin(2\chi)$	0.033
$B_s \to J/\psi \eta'$	$7,\!280$	30	$\sin(2\chi)$	0.033
$B^- \to K^- \mu^+ \mu^-$	1280	3.2		
$B^o \to K^* \mu^+ \mu^-$	2200	10		
	<u> </u>			-

A sample comparison

• Consider $B \to K^{(*)}\ell^+\ell^-$, which is relatively "easy" at the hadronic B factories

Jeff Richman tells me that ~ 100 events expected in $230~{\rm fb}^{-1}$ ($K+K^*$ and $e+\mu$)

 $\Rightarrow 10^{36}$ is not "too high" luminosity — needed to be competitive with LHCb / BTeV

- "Harder" modes not necessarily more favorable for e^+e^- BTeV claims S/B=10 in above mode; see also LHCB/BTeV numbers for $B\to \rho^0\pi^0$.
- I am guessing that e^+e^- may have advantage in
 - Modes w/o two charged tracks, e.g., $B \to \pi^0 \pi^0$
 - Modes with neutrinos: semileptonic, $B \to \ell \nu$, etc.
 - Inclusive rare and semileptonic decays

A (subjective) best buy list

- $B \to \pi\pi, \rho\pi$: pursue isospin analysis and Dalitz plot; Only with data can tell how far these can be pushed
- $B \to D^*\pi$: Is it really hopeless to get $\sin(2\beta + \gamma)$? Very clean; and also helps with discrete ambig's
- $B \to DK$: Hard, but clean way to get " γ "
- $B o \phi K_S$: β from non- $(b o c\bar{c}s)$ decay
- $B \to \nu\nu \, K^{(*)}/\rho/\pi$ or $B \to \nu\nu X_{s,d}$: (a dream...) Very clean — the B physics analog of $K \to \pi\nu\bar{\nu}$ Are these really hopeless? (3 3rd family fermions)
- $B o K^{(*)}\ell\ell$ or $B o X_s\ell\ell$: bsZ penguins, SUSY, right handed couplings, $|V_{ts}|, |V_{td}|$, etc. In particular A_{FB} is clean probe of NP
- $B \to \ell \bar{\nu}$: $f_B |V_{ub}|$ test lattice, sensitive to H^\pm Must nail: in SM $\mu \nu \sim 3 \times 10^{-7}$; also do $B \to \tau \bar{\nu}$)

" α " modes

• $B \to \pi\pi$: Penguin only contributes to $\Delta I = 1/2$ amplitude \Rightarrow To get clean information, need $B \to \pi^0\pi^0$ to isolate asymmetry in the $\Delta I = 3/2$ channel

Expect
$$\mathcal{B}(\pi^0\pi^0) \sim \text{few} \times 10^{-7}$$
 — very tough

Isospin violation claimed to be sizable (Gardner)
— need to check / reanalize

• $B \to \rho \pi$: Isospin analysis is still possible (Dalitz plot), and $\pi^+\pi^-\pi^0$ final state has two charged tracks

Good news if: 1) nonresonant $\pi^+\pi^-\pi^0$ rate small; 2) higher resonance contributions $(\rho', ...)$ small

Unclear whether theory uncertainty can be pushed down to few % in either case — need both more data and some theoretical work to know

$B \to D^*\pi$

• Interference between $b\bar{d}\to c\bar{u}d\bar{d}$ and $\bar{b}d\to \bar{u}c\bar{d}d$ Four time dependent rates, $B,\bar{B}\to D^{*\pm}\pi^{\mp}$, determine A_1/A_2 and $\sin(2\beta+\gamma)$ free of theory errors

Problem: $A(\bar{b} \to \bar{u}c\bar{d})/A(b \to c\bar{u}d) \sim \lambda^2$

I was told at the collaboration meeting to forget it. Still, this is a very clean mode, to be kept in mind...!

Belle study obtains 0.2 error from 1/2 ab⁻¹ (BCP4)

Even crude measurement could help with discrete ambiguities (different from 2β or $2\alpha = 2\pi - 2\beta - 2\gamma$)

Direct CPV: $b \rightarrow u\bar{u}d, \ u\bar{c}d$ — requires strong phase, which must be extracted from the analysis

• $B^{\pm} \to (D^0, \bar{D}^0) K^{\pm} \to f_i K^{\pm}$ (i = 1, 2)

Triangle construction from rates $\Rightarrow \sin(\gamma \pm \delta)$

Total Br's $\sim 10^{-7}$ — statistics?

eta from non- $(b ightarrow car{c}s)$ decay

 $\sin 2\beta$ from $B \to \psi K_S$ is very clean theoretically (Have to be reconsidered at the ~ 0.01 level)

• In the SM both $egin{cases} B o \psi\,K_S & b o car cs ext{ tree} \ B o \phi\,K_S & b o sar ss ext{ penguin} \end{cases}$

measure $\sin 2\beta$ — NP can easily modify $b \to s\bar{s}s$ decay amplitude Grossman, Worah

Important to measure same angle in several modes

The decay rate is:

$$\mathcal{B}(B \to \phi K_S) = (8.1^{+3.1}_{-2.5}) \times 10^{-6}$$
 (BaBar)

Constrain rescattering ($b \to u\bar{u}s, s\bar{d}d \to s\bar{s}s$), by measuring $B^+ \to \phi\pi^+, K^*K^+$ Grossman, Isidori, Worah

• Interesting to push until ~ 0.04 error — requires of order $5\,\mathrm{ab}^{-1}$ (BaBar book p.315)

But hadronic B factories can probably also do this

Rare decays

• A crude guide... $(\ell = e \text{ or } \mu)$

Decay	SM rate	physics examples
$B \to c\ell\nu$	10.5%	reference, $ V_{cb} $
$B \to c \tau \nu$	2.3%	mass effects
$B \to u \ell \nu$	1×10^{-3}	$ V_{ub} $
$B \to s \gamma$	3×10^{-4}	$ V_{ts} $, H^\pm , SUSY
$B \to s \nu \nu$	4×10^{-5}	new physics
$B \to \tau \nu$	4×10^{-5}	$f_B V_{ub} $, H^\pm
$B \to s \ell^+ \ell^-$	7×10^{-6}	new physics
$B_s \to \tau^+ \tau^-$	1×10^{-6}	
$B \to s \tau^+ \tau^-$	5×10^{-7}	
$B \to \mu \nu$	3×10^{-7}	
$B_s \to \mu^+ \mu^-$	4×10^{-9}	
$B \to \mu^+ \mu^-$	1×10^{-10}	

- Replacing $b \to s$ by $b \to d$ costs factor ~ 20 (in SM)

 Would e^+e^- have an advantage to study rare $b \to d$ decays under large $b \to s$ backgrounds?
- In $B o q\,l_1l_2$ decay expect $\sim 10-20\%~K^*/
 ho$, and $\sim 5-10\%~K/\pi$

Brainstorming

Recent ideas requiring "ridiculous" number of *B*'s:

- Extracting $\cos \alpha$ from $B^\pm \to \pi^\pm e^+ e^-$ Grinstein, Nolte, Rothstein, PRL 84 (2000) 4545 Need rough q^2 dependence of a $\sim 10^{-8}$ rate
- Gamma with CP-tagged B_s and B_d decays Falk & Petrov, PRL 85 (2000) 252

Cannot be done at hadron machines, but no asymmetry needed. They estimate that 10^{35} on the 5S may be enough.

Should search for lepton number/flavor violation at accessible ($10^{-(9-10)}$?) level, $B \rightarrow e\mu, \tau\mu$, etc., but...

Summary

If NP is discovered then many couplings may only be measurable in B decays

If results consistent with SM, then program is interesting as long as sensitivity to NP can be improved

• The 10^{36} luminosity seems about right to be competitive with hadronic B factories, e.g., on rare decays

Still, $\Upsilon(4S) \to B_{u,d}$ only, and there are many exciting processes involving B_s decays

I think only NP searches or precision SM tests could justify such machine; not hadronic physics by itself

 Is there an advantage for an asymmetric over a symmetric machine for this physics?

Can I imagine a scenario in which either is crucial?

Gold-plated modes?

- What could be a "killer application"?
 - $\mathcal{B}(B \to \pi^0 \pi^0)$ and isospin analysis in $B \to \pi\pi$
 - Decays with ν 's, e.g., $B \to \mu \nu$ & semileptonic Will $10 \ {\rm ab}^{-1}/{\rm yr}$ mean few $\times 10^7$ fully reco'd B's? ... then do $B \to \tau \nu$ and try $B \to K^{(*)}/X_s \nu \nu$...!?
 - Angle γ from $B \to DK$ (maybe $B \to D^*\pi$)
 - Many inclusive rare / semileptonic decays How well can one get $|V_{td}/V_{ts}|$ without mixing? (ultimately it's a lattice issue whether $|V_{ub}/V_{cb}|$ and $|V_{td}/V_{ts}|$ can be measured at the % level)
- Many interesting and maybe even unique measurements, but cannot seem to find anything terribly compelling beyond $\sim 1~{\rm ab}^{-1}$ and LHCb / BTeV

This may well change depending on where the physics leads us... and/or with more imagination...